MINISTÈRE DE L'ÉDUCATION NATIONALE ET DE LA FORMATION PROFESSIONNELLE (MENFP)

FILIÈRE D'ENSEIGNEMENT GÉNÉRAL

EXAMENS DE FIN D'ÉTUDES SECONDAIRES

TEXTE MODÈLE

SÉRIE : SES PHYSIQUE

Consignes :

nes: 1. L'usage de la calculatrice programmable est formellement interdit.

- 2. Tout gadget électronique (Tél., tablette, iPad, montre intelligente) est formellement interdit dans la salle d'examen.
- 3. Le silence est obligatoire dans la salle, il crée de meilleures conditions de travail.

N.B : L'épreuve comporte deux parties et sa durée est de deux (2) heures

PREMIÈRE PARTIE

I. T	Transcrire les phrases suivantes en complétant convenablement. (20 pts) La grandeur qui caractérise l'ensemble des lignes d'inductions à travers une surface s'appelle et son unité de mesure
est l	
	La roue de Faraday met en évidence le phénomène de et la roue de Barlow est une application de la loi de
	L'inverse de la capacité équivalente à un ensemble de condensateurs disposés en série est égal à la des
	L'impédance d'un circuit est le de la tension à ses bornes par qui le traverse.
5- est	Dans un mouvement rectiligne uniformément accéléré la valeur du vecteur-vitesse est et le vecteur- accélération
	Traiter les deux questions suivantes. (20 pts)
	Au laboratoire du Lycée Faustin Soulouque, un élève du secondaire IV trouve un condensateur qui est constitué d'un flacon de
	verre rempli de cliquant ou de feuilles métalliques et recouvert extérieurement de feuilles d'étain ou d'aluminium. Le cliquant es
	relié à une tige de laiton en forme de cygne.
	a) Identifier le condensateur décrit dans le texte.
	b) Ecrire la formule de calcul de sa surface de ce condensateur.
2-	Une bobine est formée de N spires jointives parcourue par un courant d'intensité I, créant ainsi un champ magnétique en son centre
	Le diamètre D de la bobine étant supérieur à sa longueur.
	a) Quel type de bobine s'agit-il?b) Ecrire la formule de calcul du champ magnétique.
Ш	Choisir la réponse jugée correcte. (30 pts)
	La tension aux bornes d'un secteur ayant une self pure d'inductance 0.16 H est $u(t) = 120\sin(\omega t + \varphi)$ et sa fréquence est de 60
Hz.	
ПZ.	a) La pulsation de cette tension est :
	• $\omega = 376.8 rd / s$ • $\omega = 314 rd / s$ • $\omega = 31.4 rd / s$ • $\omega = 37.68 rd / s$
	b) L'impédance de cette bobine est :
	• $Z=50~\Omega$ • $Z=60.3~\Omega$ • $Z=5.024~\Omega$ • $Z=603~\Omega$
	c) Si cette tension vaut 60 volts à l'instant $t = 0$. Alors sa phase à l'origine est :
	$\varphi = \frac{\pi}{3}rd \qquad \qquad \varphi = \frac{\pi}{6}rd \qquad \qquad \varphi = \pi rd \qquad \qquad \varphi = 0rd$
2 7	$c_1 = 2\mu F$, $c_2 = 3\mu F$ et $c_3 = 6\mu F$
2 - 1	Trois condensateurs de capacités $c_1 = 2\mu F$, $c_2 = 3\mu F$ et $c_3 = 6\mu F$ sont associés comme le montre la figure ci-dessous
	a) La capacité équivalente de l'ensemble des trois condensateurs est :
	• $7.2\mu F$ • $0.72\mu F$ • $11\mu F$
	b) On établit une tension de 60V aux bornes de l'association. La charge emmagasinée est :
	• $43.2\mu c$ • $4.32\mu c$ • $432\mu c$ • $0.432\mu c$
	c) La charge prise par le condensateur C ₃ est :
	• $180 \mu\text{C}$ • 360mC • $360 \mu\text{C}$ • 360C

DEUXIÈME PARTIE

IV. Traiter l'un des problèmes suivants. (30 pts)

<u>Problème I</u>

- A- Un générateur de courant alternatif débite un courant de valeur instantanée $i=5\sqrt{2}\sin 100\pi\ t$. dans un circuit comprenant un conducteur ohmique de résistance $50\ \Omega$.
 - a) Quelles sont la période et l'intensité efficace du courant.
 - b) Déterminer l'énergie dissipée dans ce conducteur pendant 10 mn15 s.
- B- On enlève le conducteur dans le circuit et on le remplace par un condensateur de capacité $50 \mu F$.
 - c) Calculer la réactance du condensateur.
 - d) Ecrire l'expression mathématique de la tension du courant aux bornes du circuit.

Problème II

Pour former un solénoïde, on enroule N spires régulièrement sur une longueur cylindrique de 40cm donc la section de base est 24cm². On fait passer un courant de 10A dans cet enroulement. Déterminer :

- a) Le nombre de spires du solénoïde formé sachant que le champ magnétique crée en son centre vaut 15.7 mT.
- b) L'inductance de ce solénoïde;

On coupe brusquement l'intensité du courant dans le solénoïde en 1/50 s.

- a) Calculer la variation du flux propre à travers ce solénoïde;
- En déduire la valeur de la f.é.m. auto-induite qui y prend naissance.

MINISTÈRE DE L'ÉDUCATION NATIONALE ET DE LA FORMATION PROFESSIONNELLE (MENFP)

FILIÈRE D'ENSEIGNEMENT GÉNÉRAL

EXAMENS DE FIN D'ÉTUDES SECONDAIRES

XAMENS DE FIN D'ETUDES SECONI TEXTE MODÈLE

SÉRIES : (SVT, SMP) PHYSIQUE

Consignes :

1. L'usage de la calculatrice programmable est formellement interdit.

- 2. Tout gadget électronique (Tél., tablette, iPad, montre intelligente) est formellement interdit dans la salle d'examen.
- 3. Le silence est obligatoire dans la salle, il crée de meilleures conditions de travail.

N.B : L'épreuve comporte deux parties et sa durée est de deux (2) heures

PREMIÈRE PARTIE

	ranscrire les phrases suivantes en complétant convenablement. (20 pts)
1-	Dans la région centrale d'un solénoïde le champ magnétique est; les lignes de champ sont des
2-	La quantité d'électricité induite est proportionnelle à la, mais elle est indépendante de la, du flux inducteur.
3-	Au cours de sa, un condensateur emmagasinée de l'énergie qu'il restitue lors de
5-	L'amplitude du courant alternatif est la plus atteinte par le courant au cours d'une Dans un mouvement rectiligne uniformément accéléré, la valeur du vecteur-vitesse, mais celle du cteur-accélération est
II.	Traiter les deux questions suivantes. (20 pts)
1-	Maritza, élève de Secondaire IV, dispose de trois (3) condensateurs de capacités respectives distinctes C ₁ , C ₂ et C qu'elle décide d'associer en série aux bornes d'une tension continue U ₁ . a) Quelle relation existe-t-il entre les charges Q ₁ , Q ₂ et Q ₃ prises par les condensateurs de capacités respectives C ₁ , C ₂ et C ₃ ? b) Ecrire la formule permettant de calculer la capacité du condensateur équivalent à l'association.
2-	Henry, élève de Secondaire IV, enroule quelques spires d'un fil de cuivre autour d'un noyau de fer doux. Il relie ensuite les extrémités du fil aux bornes d'une pile. Il constate dès lors que le noyau acquiert la propriété d'attirer des petits clous. a) Quel est ce dispositif que Henry vient de fabriquer ? b) Faire un schéma, puis écrire la formule permettant de calculer la force portante du dispositif.
	Choisir la réponse jugée correcte. (20 pts)
	L'équation horaire d'un courant alternatif sinusoïdal qui traverse une portion de circuit comprenant une inductance non
rés	istive de valeur L = 0,27 H est $i(t) = 4\sqrt{2} \sin 200 t$.
	a) L'intensité efficace du courant vaut : • 2 A • 4 A • $2\sqrt{2} A$
	b) L'impédance du circuit est :
	c) L'expression mathématique de la tension est :
	• $u(t) = 304,5\sqrt{2}\sin 200t$ • $u(t) = 304,5\sqrt{2}\sin(200t + \frac{\pi}{2})$
	$u(t) = 216\sqrt{2}\sin(200t + \frac{\pi}{2})$ • $u(t) = 216\sqrt{2}\sin(200t - \frac{\pi}{2})$
La	On réalise une association de condensateurs identiques de capacité C ₁ chacun, comme l'indique la figure ci-contre. capacité équivalente de l'ensemble vaut 5 microfarads. On alimente cette association sous une tension continue = 300 V.
3-	
	a) La capacité de chacun des condensateurs est : • $8\mu F$ • $2\mu F$ • $1,25\mu F$ • $0,8\mu F$
	b) La charge prise par l'association est égale à :
	• 1,5 mC • 1500 mC • 600 μC • 600 mC c) L'énergie emmagasinée par l'association à la fin de la charge est : • 225 J • 2,25 mJ • 225 mJ • 22,5 mJ
	DELIVIÈME DA DELE

DEUXIÈME PARTIE

V. Traiter l'un des problèmes suivants. (40 pts)

Problème I

Un pendule simple est constituer d'un fil long de 60 cm auquel est accroche un solide quasi ponctuel de 450 g. On écarte ce pendule de sa position d'équilibre d'un angle $\theta=50^\circ$. On choisit comme plan de référence de l'énergie potentielle de pesanteur le plan horizontal contenant la position d'équilibre du solide.

- a) Ecrire l'expression de l'énergie potentielle du système en fonction de l, m, θ et g. En déduire la valeur de cette énergie. (Prendre g=9.8m, s^{-2}).
- b) A quelle vitesse le solide passe-t-il par sa position d'équilibre ?
- c) Dans la position $\theta=30^\circ$, quelles sont les valeurs des énergies potentielle et cinétique du système ?

Problème II

On considère une bobine B, de longueur 80 cm, comprenant 1000 spires jointives de diamètre 10cm chacune. Elle est traversée par un courant de 8A.

- Calculer l'intensité de l'induction créée au centre de la bobine et le flux d'induction à travers cette bobine.
- 2. On introduit à l'intérieur de la bobine B une petite bobine B', de même axe que B. La petite bobine comporte 70 spires de section 25 cm² chacune. Le courant varie dans B de 8A à 4A en 1/50 de seconde. Calculer :
- a) La f.é.m. induite qui prend naissance dans B';
- b) L'intensité du courant induit sachant que la résistance de la bobine B' est de 4 Ω.
- c) La quantité d'électricité induite